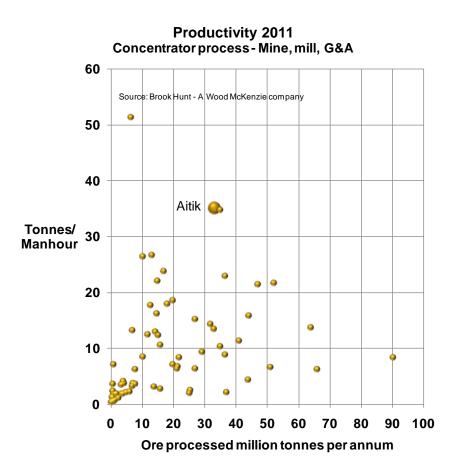
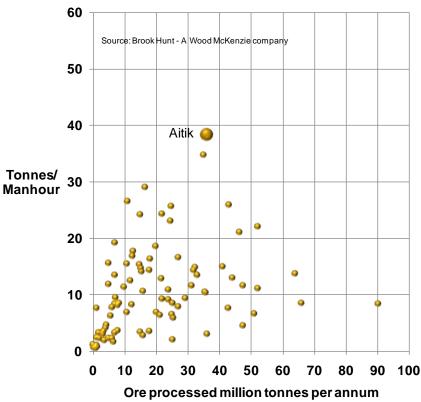


## **Benchmark Aitik**

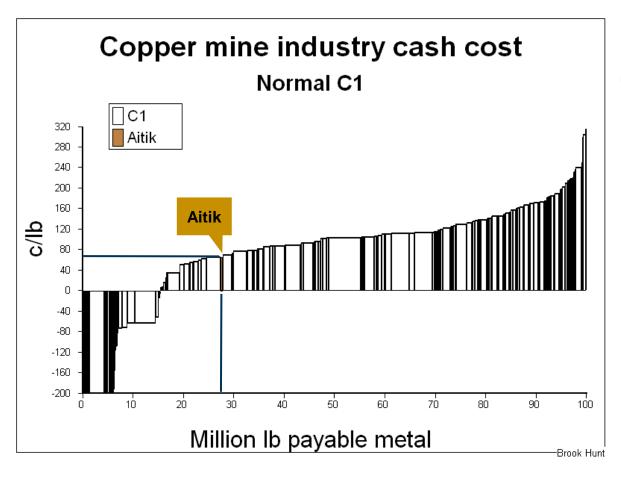

Capital Markets Day 6 September 2011

Jan Moström President Business Area Mines




# Open pit copper mines,

## **Brook Hunt benchmark**



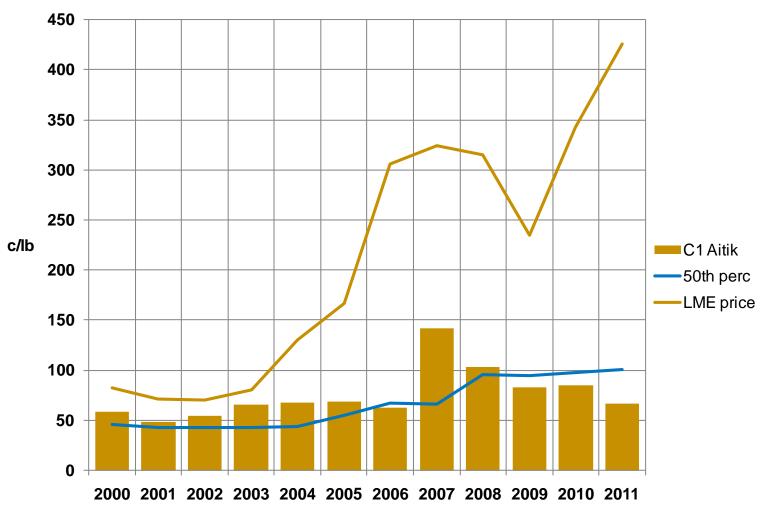

## Productivity 2014 Concentrator process - Mine, mill, G&A





## Aitik on the CC1 curve




#### Aitik

- Low grades
- High productivity
- By metals gold and silver
- Favourable stripping ratio

Source: Brook Hunt - A WoodMcKenzie company



# CC1 position, Aitik



Source: Brook Hunt - A WoodMcKenzie company, Reuters



# Competitiveness

**Aitik** 

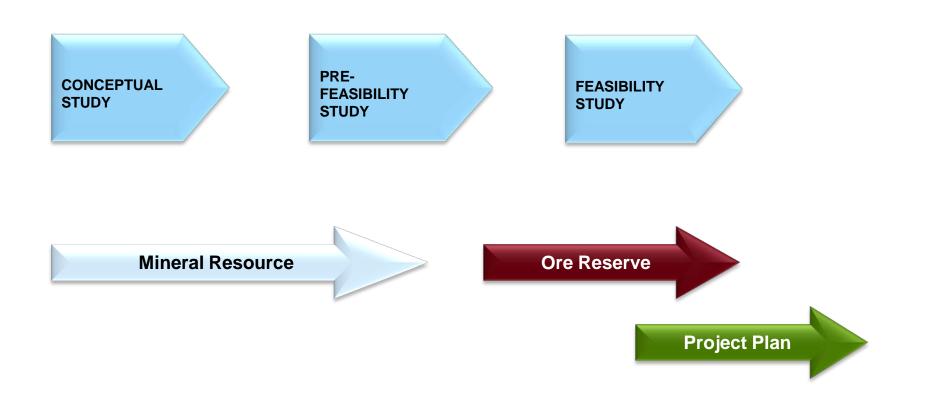
STRENGTHS AND WEAKNESSES - 2011 (BH2011 Q2)

| RESOURCE VARIABLES Head Grade % Cu |            | Population   | Mine  | Percentil | 1st | 2nd | 3rd | 4th |
|------------------------------------|------------|--------------|-------|-----------|-----|-----|-----|-----|
|                                    |            | Average 1.12 | Value | 96        |     |     |     | + - |
|                                    | % Cu       |              | 0.28  |           |     |     |     | •   |
| Yield                              | %          | 83.3         | 88.2  | ''        | •   |     |     |     |
| Yield Grade                        | % Cu       | 0.94         | 0.25  |           |     |     |     | •   |
| Net Revenue                        | %          | 80.0         | 80.1  |           |     | •   |     |     |
| Net Yield Grade                    | % Cu       | 1.33         | 0.31  | 98        |     |     |     | •   |
| OPERATING VARIABL                  | ES         |              |       |           |     |     |     |     |
| Productivity                       | t ore/hour |              |       |           |     |     |     |     |
| Mine                               | t ore/hour | 13.5         | 37.9  | 5         | •   |     |     |     |
| Mill                               | t ore/hour | 26.6         | 156.4 | 0         | •   |     |     |     |
| G&A                                | t ore/hour | 51.2         | 550.0 | 0         | •   |     |     |     |
| Overall                            | t ore/hour | 6.3          | 28.9  | 0         | •   |     |     |     |
| Wage Rate                          | \$/hour    | 25.54        | 58.65 | 91        |     |     |     | •   |
| Labour Cost                        | \$/t       | 8.59         | 1.88  | 20        | •   |     |     |     |
| Electricity                        | c/kWh      | 7.6          | 3.7   | 10        | •   |     |     |     |
|                                    | kWh/t      | 38.8         | 18.5  | I - I     | •   |     |     |     |
|                                    | \$/t       | 2.79         | 0.68  |           | •   |     |     |     |
| Fuel Oil                           | c/litre    | 97.8         | 73.9  |           | •   |     |     |     |
|                                    | litres/t   | 1.9          | 1.0   |           | ·   |     |     |     |
|                                    | \$/t       | 1.88         | 0.77  | ·         | •   |     |     |     |
| Energy Cost                        | \$/t       | 4.67         | 1.45  |           | •   |     |     |     |
| Consumables                        |            | 10.60        | 1.90  | 5         |     |     |     |     |
| Services                           | \$/t       | 7.85         | 2.20  |           | •   |     |     |     |
| Other Costs                        | \$/t       | 18.45        | 4.10  |           | •   |     |     |     |
| Cost To Conc                       | \$/t       | 31.71        | 7.43  | 1         | •   |     |     |     |

- Grade
  - 4th quartile
- Productivity
  - 1st quartile
- Cost to conc.
  - 1st quartile






# **Modelling the Garpenberg expansion**

Capital Markets Day 6 September 2011

Jan Moström President Business Area Mines



# Resource Development – Work Flow Model





# **Conceptual Study**

# CONCEPTUAL STUDY

- Early stage in an exploration project
- Based on inferred resource
- Guide for exploration work
- Guide for further studies (pre feasibility and feasibility)
- Evaluation of options regarding mining methods and process design (lab tests)
- Products (full analysis)
- Several studies on parts of the project

## Output

- Mine design options
- Process design options
- Preliminary market outlook
- Indicative LOMP
- Economical estimates
- Recommended options
- Drilling program



GO or NO GO



# **Pre-feasibility Study**

## PRE-FEASIBILITY STUDY

- Based on indicated resource
- Alternative solutions studied (≤3 alternatives)
- Often interactive process
- Permitting process starts
- Accuracy 20-25 %

## Output

- Mine design
- Process design
- Plant design
- Prel LOMP (Life Of Mine Plan)
- Economic evaluation
- Ore Reserve



GO or NO GO



# Garpenberg alternatives – pre-feasibility study

### 3 main alternatives were evaluated:

- Base case 1.4 Mtonnes. Continued operation in existing concentrator
  - 1.4 Mtonnes/year until 2044\*
- Expansion case 2.0 Mtonnes. Expansion of existing concentrator in combination with new shafts
  - 2.0 Mtonnes/year until 2035\*
- Expansion case 2.5 Mtonnes. New concentrator built at new shafts.
   Existing plants will be closed
  - 2.5 Mtonnes/year until 2030\*



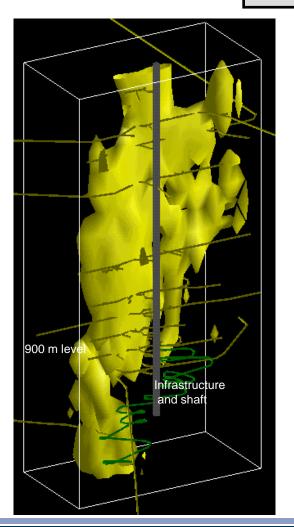
<sup>\*</sup> Based on mining and milling of 47 Mtonnes ore.

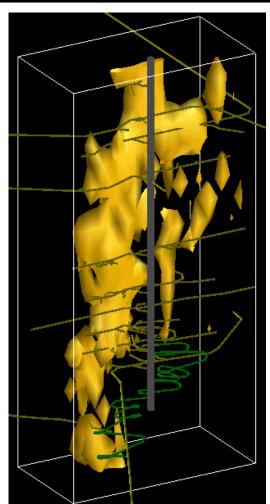
# Mine and Process design

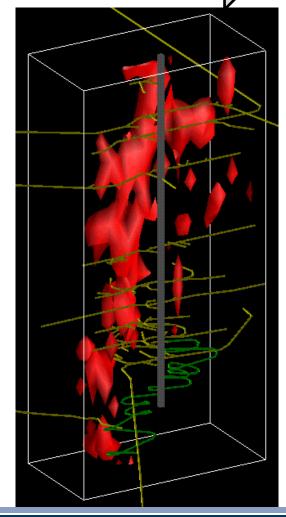
## Mine design

- Most important
  - Mining method
  - Mining sequence
  - Infrastructure, ventilation, backfilling and dewatering
- Fix plants
  - Ore passes and shutes
  - Crushers and ore bins
  - Ore hoisting system
- Equipment
  - Capacity
  - Mobility

## Process design


- Most important
  - Recovery of metals
  - Concentrate quality
  - Penalty elements
- Process route
  - Type of process grinding and separation
  - Energy consumption
  - Chemical consumption
- Equipment
  - Capacity, +-grinding ability
  - Variations in feed grades





## **Effects of Costs and Metal Prices on Ore Reserve**

Increasing metal price/Decreasing production cost

Decreasing metal price/Increasing production cost







## **EBIT-effects' components**

Revenue effect

Cost effects

### Recovery/quality

Optimized flotation capacity

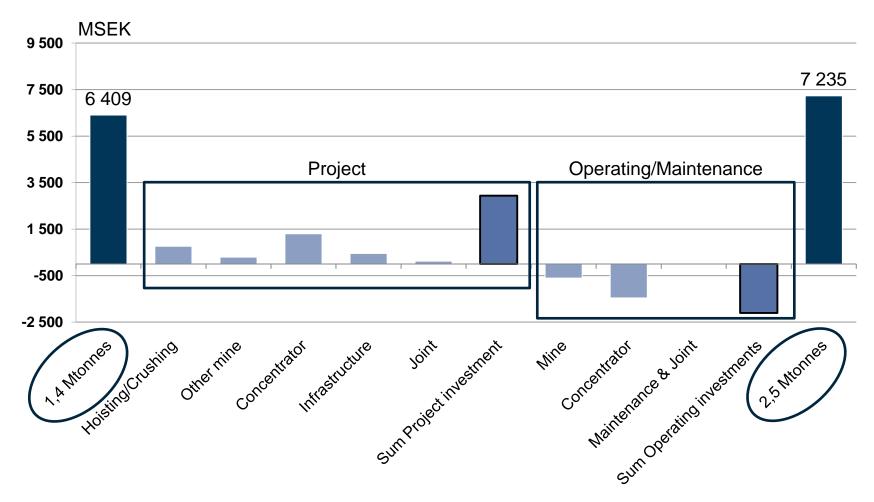
## **Energy**

- Scale adv. Concentrator
- Increased ventilation requirements underground
- Decreased ore and waste transport

#### <u>Material</u>

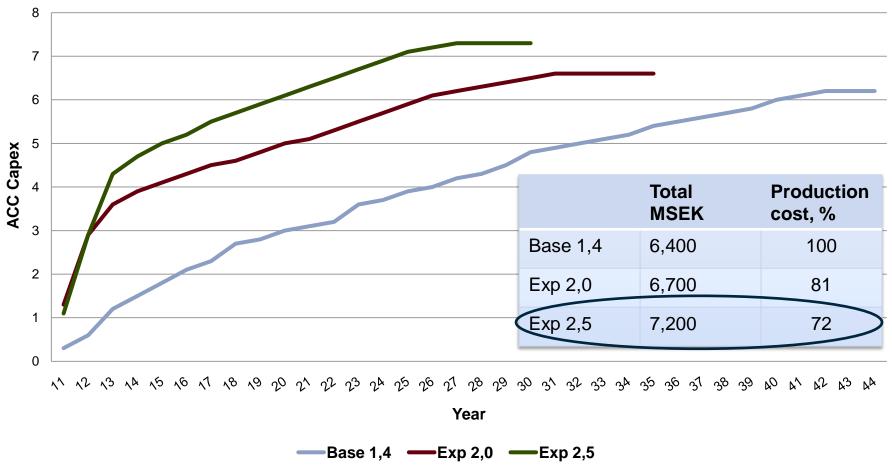
- Scale advantages concentrator
- Scale advantages mine

#### <u>Personnel</u>


- Scale advantages mine and concentrator
- Automation crushing, hoisting

## **External services**

- Ore and waste transports
- Scale advantages concentrator




# Difference in Capex – 1,4 vs 2,5





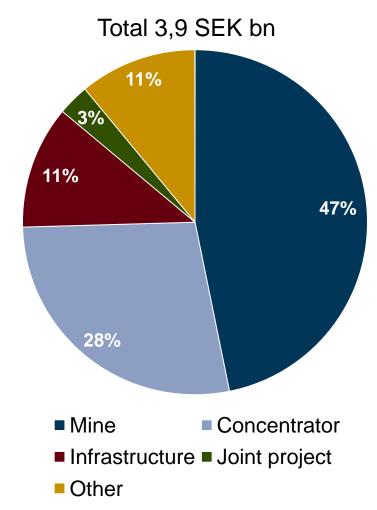
## Accumulated capex during life of mine





# **Garpenberg expansion – Capex components**

#### Mine


- Excavation
- Hoisting, crushing and skip station
- Mine ventilation
- Media-, paste-, electric system
- Mobile equipment
- EPCM (DP-management, engineer work etc)

#### Concentrator

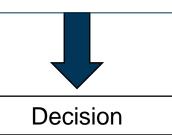
- Ore stock
- Concentrator
- EPCM

#### Infrastructure

- Roads, ground work, project area
- Buildings
- Electric power distribution, switch gear
- EPCM
- Joint, other



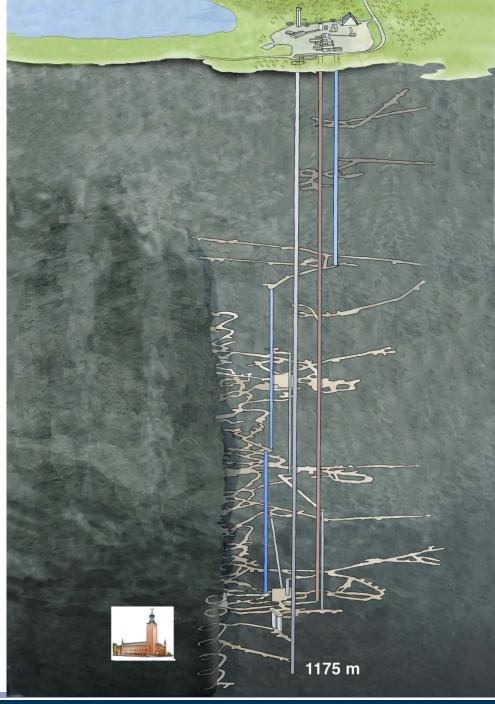



# **Feasibility Study**

## FEASABILITY STUDY

- Final stage before construction
- Based on measured / indicated resource
- One alternative studied
- Final sequencing and Production plan (Life Of Mine Plan)
- Sensitivity and risk analysis
- Implementation plan
- Capex accuracy □ 10 15 %
- Head grades accuracy □5%

## Output


- Mine design
- Process design
- Economic evaluation
- Ore Reserve
- Detailed equipment list
- Lay Out Drawings
- Implementation plan
- Sensitivity analysis
- Permits
- Life Of Mine Plan (LOMP)













